
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1994-09

A comparative study of commercial and
Department of Defense strategies for
developing software applications

Clancy, Gregory A.
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/42969

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL

Monterey, California

19950109 092 THESIS

A COMPARATIVE STUDY OF COMMERCIAL AND
DEPARTMENT OF DEFENSE STRATEGBES FOR

DEVELOPING SOFTWARE APPLICATIONS

by

Gregory A. Clancy

September 1994

Thesis Advisor: James C. Emery

Approved for public release; distribution is unlimited.

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction searching existing data sources, gathering and maintaining the data needed, and completing and reviewmg the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, mcludmg suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1994

3. REPORT TYPE AND DATES COVERED
Master's Thesis, Final

4. TITLE AND SUBTITLE
A COMPARATIVE STUDY OF COMMERCIAL AND DEPARTMENT OF DEFENSE

STRATEGIES FOR DEVELOPING SOFTWARE APPLICATIONS

6. AUTHOR(S) Clancy, Gregory A.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11 SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release;
distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
A focus on information system application development is on the rise as users become more familiar with the computing

environment and the business advantages it gives the organization. Enormous software development backlogs and increasing
demand for application software is forcing information system managers to look at new and innovative ways to develop and
maintain software. High-level languages and tools are being introduced into organizational information system development
environments. Software languages and tools that are being used to build systems quickly and effectively by leading-edge
organizations are fourth-generation languages, computer-aided software engineering tools, and object-oriented technologies.
Results of a survey of 23 information system executives that accompany this thesis provide evidence that organizations are moving
rapidly toward these languages and tools, and continue to shift their emphasis away from older conventional development
methodologies and line-by-line coding of procedural programming languages. The Department of Defense should revise its own
policies and practices where appropriate to conform to the clear trends emerging in leading private-sector organizations

14. SUBJECT TERMS
Application Software Development

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

15. NUMBER OF PAGES

66
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

.11

Approved for public release; distribution is unlimited.

A COMPARATIVE STUDY OF COMMERCIAL AND
DEPARTMENT OF DEFENSE STRATEGIES FOR

DEVELOPING SOFTWARE APPLICATIONS

by

Gregory A. Clancy
Lieutenant Commander, United States Navy
B.S., South Dakota State University, 1981

Submitted in partial fulfillment
of the requirements for the degree

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 1994

Author:

Approved by:

' Gregory A. Clancy

William B. Short, Second Reader

David R. Whipple, Chairman
Department of Systems Management

icoeasion For

HfIS CRA&I
MIC TAB
Unanaowecofi
JuslKLfloatlon-

a
a

in

By-
ms*iM**t%w*Sd &

Availability 0«aes

»1st

I ,\

Ifafi aad/or
Special

IV

ABSTRACT

A focus on information system application development is on the rise as users

become more familiar with the computing environment and the business advantages it

gives the organization. Enormous software development backlogs and increasing demand

for application software are forcing information system managers to look at new and

innovative ways to develop and maintain software. High-level software languages and

tools are being introduced into organizational information system development

environments. Software languages and tools that are being used to build systems quickly

and effectively by leading-edge organizations are fourth-generation languages,

computer-aided software engineering tools, and object-oriented technologies. Results of a

survey of 23 information system executives that accompany this thesis provide evidence

that organizations are moving rapidly toward these languages and tools, and continue to

shift their emphasis away from older conventional development methodologies and

line-by-line coding of procedural programming languages. The Department of Defense

should revise its own policies and practices where appropriate to conform to the clear

trends emerging in leading private-sector organizations.

yi

TABLE OF CONTENTS

I. INTRODUCTION 1
A. BACKGROUND 1

B. THESIS OBJECTIVE 2
C. METHODOLOGIES 2
D. SCOPE AND LIMITATION OF STUDY 2

E. ORGANIZATION OF THESIS 3

II. LITERATURE REVIEW 5

A. HISTORY 5

1. DoD Automated Information Systems Development 6

2. CIM Strategy 6

3. Information System Trends 8
B. DOD INFORMATION TECHNOLOGY STRATEGY 9

1. DoD Technical Architecture Framework for Information
Management 10

a. Technology 10
b. Product availability 10
c. Open systems environment 10

d. Streamlined life cycle 10
e. Modeling and prototyping 11

f. Streamlined acquisition 11

g. Education and training 11
C. SOFTWARE TECHNOLOGY 11

1. The 3GL Environment 12

2. The 4GL Environment 13
3. The CASE Environment 14
4. Additional Software Technologies 15

III. THE SOFTWARE DEVELOPMENT ENVIRONMENT 17
A. SOFTWARE DEVELOPMENT METHODOLOGIES 17

1. Conventional Systems Development Life Cycle 18

vii

2. Prototyping 20

3. Emerging Software Development Paradigm 22

4. Object-oriented Technology 23

B. DEALING WITH LEGACY SYSTEMS 24

C. THE SOFTWARE ORGANIZATION 26

1. The High-level Business Analysts 26
2. The Multidisciplinary Team Leaders 27

3. The Super Technical People 27
4. Information Technology Specialists 27

D. DATABASE INTEROPERABILITY 29

IV. PRESENTATION OF DATA 31
A. THE ROLE OF LEGACY SYSTEMS 31
B. DEVELOPING AND MAINTAINING INFORMATION

SYSTEMS 33
C. PROFESSIONAL SKILLS 37
D. SOFTWARE DEVELOPMENT METHODOLOGY 38

E. STRATEGIC PLANNING 40
V. CONCLUSIONS AND RECOMMENDATIONS 43

A. RESPONSE PROFILE 43
B. LEGACY SYSTEMS 45
C. INFORMATION SYSTEM LANGUAGES 45
D. SOFTWARE DEVELOPMENT PERSONNEL 46
E. RECOMMENDATIONS FOR FURTHER RESEARCH 47

APPENDIX. SURVEY QUESTIONS 49
LIST OF REFERENCES 55
INITIAL DISTRIBUTION LIST 57

VIII

I. INTRODUCTION

A. BACKGROUND
One of the problems in software development is the creation of specifications for

complex systems. Specifications that define user requirements are normally full of

inconsistencies, ambiguities, and omissions. The conventional systems development life

cycle (SDLC) is a software development process that demands user requirements be

specified up-front, before development of an information system can continue. DoD

continues to emphasize a version of the conventional (i.e., "waterfall") model to develop

information systems. This conventional model for software development is not flexible

enough and is not adaptable to changing user requirements.

The literature shows that despite the efforts to modify the conventional process,

information systems are still delivered late, over budget, and at variance with users need.

Data collected for this paper indicates that Chief Information Officers (CIOs) do not view

the conventional model as a viable option for application development. CIOs are

expecting a prototyping method of software development or anew development paradigm

to give them adaptability and flexibility in software development. They expect

applications to be developed quickly, using high-level languages and tools.

The trend in application development has moved toward using more powerful

programming languages and development tools such as fourth-generation languages,

CASE tools, micro-based development tools, and object-oriented technology. To replace

specific business applications of organizational information systems, organizations are

purchasing application packages that contain the required functionality to assist them in

performing their business tasks.

Organizations are looking to train and hire software development personnel with

additional skills beyond the traditional third-generation (3GL) programming skills and

systems analysis/design experience. Organizations are seeking data communications

specialists, specialists in PC-based products, database specialists, and specialists skilled in

specific business areas.

B. THESIS OBJECTIVE

The objective of this research has been to study the DoD and commercial industry

strategy for software development by examining software development methodologies,

languages, and tools used for software development, as well as the organization of

software development. The overall objective of the thesis is to provide DoD with views

and practices of application development that are now being used by the private sector.

C. METHODOLOGIES
A literature search was conducted to provide insight into background information on

application development methodologies and software technologies. A survey, given in the

Appendix, was developed and distributed to senior executives who participate in the

strategic planning of application development for their organizations. The senior

executives, who are all serving (or have served) as CIOs or equivalent executive officers,

were specifically selected because they are recognized as leaders in information

technology. The confidentiality of the survey participants has been reserved in order to

obtain the maximum number of object responses.

The survey was sent by fax to 31 executives; 23 responses were received.

Approximately one-half of the completed surveys were faxed back, and the other half of

the responses were obtained over the telephone. Obtaining the survey responses over the

telephone provided a valuable opportunity to interview some of the respondents and allow

them to expand on the reasoning behind their responses to questions in the survey.

D. SCOPE AND LIMITATION OF STUDY

This research was designed to obtain trends in application development. The number

of completed surveys was not enough to perform a traditional statistical analysis. The

questionnaires do, however, provide valuable clues about the views of top-level

executives to determine trends in software development methodologies, application

development, professional skills necessary for software development, and the role of

legacy systems in their organizations.

E. ORGANIZATION OF THESIS
Chapter II gives a brief history of software development in DoD information systems.

The chapter then continues with DoD's strategy for exploiting information technology as

described by the Corporate Information Management (CIM) initiative and the Technical

Architecture Framework for Information Management (TAFIM). The chapter concludes

with a discussion on software development environments.

Chapter III discusses issues in the software development environment: software

development methodologies and the software organization. The Software Development

Life Cycle (SDLC), prototyping, and object-oriented programming methods of

development are analyzed. A section of this chapter discusses options for dealing with the

hundreds of legacy systems in DoD's inventory.

Chapter IV surveys application development from 23 senior executives in the

information technology field. The results provide tabulated data in the areas of software

development methodologies, legacy systems, developing and maintaining information

systems, and professional skills needed for the software development organization.

Relatively little information is available about software development strategies of leading

private-sector organizations. Because of DoD's professed intention to emulate best

practices in industry, the survey data should provide valuable new information for DoD

policy makers.

Chapter V provides conclusions to the collected survey data and recommendations

for further research.

II. LITERATURE REVIEW

Developing and maintaining information systems in DoD has been a difficult process

that often results in a product that is not acceptable to the user. DoD has recognized its

shortcomings in applying information technology management, and has established new

programs to make better use of information technology and eliminate

duplication-especially the Corporate Information Management initiative (CIM). The

Technical Architecture Framework for Information Management (TAFIM) has also been

formulated to guide managers in the development of technical architectures to meet DoD

mission requirements.

In order to gain a better insight about DoD's current position on software application

development, it is important to have a broad perspective of DoD policy and guidelines in

information technology development and acquisition. This chapter briefly discusses the

CIM initiative and the TAFIM, as DoD's policy and guidelines for DoD development and

acquisition of information system resources. The chapter then continues by discussing

trends in information systems and concludes with a discussion on software technologies

that have been used to create information systems by DoD and the private sector.

A. HISTORY
Over the past three decades, there have been rapid technological advances in

computer hardware. The benefits of using the hardware, however, have been hindered by

problems of software development and maintenance. Throughout this period, the rate of

improvement in software development and maintenance has fallen far behind the rate of

advance in hardware technology, continually widening the gap between the power of the

hardware and our ability to use it effectively (Jones 1991).

There are a number of reasons for this gap: software is difficult to specify, debug, and

maintain; there has been little progress in new methodologies for developing software;

projects have become increasingly larger and more complex; and organizations do not

know or understand how to deal with the organizational and cultural change required to

successfully introduce new technologies and methodologies.

DoD, as well as the private sector, have had their share of problems specifying the

requirements necessary to build an effective information system. As a result, the delivered

system is often delivered late and over budget, and is not what the user needs.

1. DoD Automated Information Systems Development

The exploitation of information technology within DoD has not been without its

problems. Requirements from users for additional functionality and integration have

grown at a more rapid rate than can be satisfied by existing software engineering practices.

As a result, software now constitutes by far the most serious bottleneck to exploiting

information technology. Without major improvements in the process of developing and

maintaining software, the "software crisis" can only grow worse. (Emery, McCaffrey

1991)

Adding to problems associated with the development of software, DoD has had its

share of difficulties in Automated Information Systems (AIS) acquisition. A report to the

101st Congress (1989) reviewing eight DoD AIS reported that AIS projects:

...experienced significant cost growth, some in the hundreds of millions of dollars.
Four of the eight systems have been in development for the last 8 years and two of the
system's development efforts were abandoned after $237 million. ...and have been delayed
by 3 to 7 years and none of the systems are scheduled to be fully deployed until the 1990s.

Solving these problems within DoD is a difficult task at best. The Corporate

Information Management (CIM) initiative is a start at formulating a strategic plan that

addresses these issues.

2. CIM Strategy

The critical role of information technology in DoD is widely recognized in the

development of AIS and weapons systems. Information technology will play a pivotal

role as a "force multiplier" during a time when the force structure is being reduced

dramatically. Given the austere budgeting environment and the exploding cost of AIS

.6

development, military leaders are challenged with accomplishing more with less. To

accomplish this, they must identify and eliminate waste and make improvements in quality

and efficiency.

To deal with the problems of information technology development and acquisition,

DoD in 1989 initiated CM to improve its business practices, make better use of

information technology, and eliminate duplicate information systems. The program is

designed to eliminate redundant information systems and software from distributed

administrative areas, and consolidate common applications into centers that operate under

standardized data usage.

DoD's CIM strategic plan lays out six basic goals to ensure that DoD is able to

exploit information technology in an era when funding has been reduced and consolidation

is an organization norm: (Endoso 1994)

• Re-invent and re-engineer DoD's processes.

• Couple DoD organizations together through common, shared data.

• Minimize duplication and enhance DoD's information systems.

• Implement a flexible, worldwide information infrastructure.

• Apply CIM to integrate DoD-wide operations.

• Establish a CIM policy and management structure.

These are formidable tasks. DoD has hundreds of information systems that support

a myriad of business practices, supported by an entrenched culture that adheres to

long-standing practices and traditions. For many years within DoD, individual services

and subunits have developed and operated their own AIS to perform equivalent functions.

As an example, DoD had more than 30 different automated systems to support civilian

payroll. Consolidating and integrating those systems will be a major undertaking.

3. Information System Trends

DoD and commercial businesses have historically used information technology in an

attempt to make the organization more productive and efficient. Computers and

application software were brought into the organization without managers understanding

the role the information systems would perform for the business. It was believed that

adding information technology to the business environment would make the organization

more productive and effective. In essence, the organization was expected to adapt to a

host of technological improvements for the sake of technological advance, and many AIS

projects did not help the organization achieve its desired goals. The emphasis of

information technology was placed on how well the information systems functioned with

respect to processing efficiency and performance reliability, regardless of the particular

functions the information systems performed.

The 1980s brought a new business vision that looked at how information technology

could be used to support the organization. Customized management reports generated by

management information systems (MIS) and expanded database management systems

(DBMS) are examples of systems that have been used to give management better

information and consolidate data for the organization.

This new vision focuses on the strengths and capabilities of the organization, along

with the business opportunities that the organization encounters, and assesses how

information technology can be used to bring about that vision (Senn 1990).

Organizations now look at their business processes and tailor information systems to

support their business objectives. This process, which has been called "business

re-engineering," allows organizations to identify the functions that are important to the

success of the organization and then apply information technology to assist the

organization in meeting those functions.

Because of this trend in applying information technology to help organizations

accomplish their business goals, the complexity of delivering and maintaining information

systems has increased. The following are some of those trends (Emery, McCaffrey 1991):

8

• Organizations increasingly view MIS as an integral contributor to their business

strategy and as a primary vehicle for implementing improvements in critical

operational activities.

• There seems to be few limits to the growth in the functional requirements

demanded by the users, except for the organization's ability to deliver the

supporting software; as a result, mainline MIS applications are growing rapidly in

size, with programs in excess of a million lines of code not uncommon.

• Managers increasingly demand that the MIS be designed in such a way that it can

adapt to organization learning and environment changes.

• MIS designers increasingly put the primary design emphasis on a shared database

rather than on individual applications.

• Hardware is declining rapidly as a significant design issue; software issues should

almost always dominate design decisions (unless constrained by existing

hardware or acquisition regulations).

• Low programmer productivity, both in the initial development and throughout the

continuing maintenance cycle of an application, constitutes a major impediment to

the successful use of management information systems.

B. DOD INFORMATION TECHNOLOGY STRATEGY

1. DoD Technical Architecture Framework for Information Management

Current DoD information systems infrastructure consists largely of "stovepiped,"

single-purpose, and inflexible systems that are difficult and costly to maintain. In an

attempt to provide guidance for development of better quality information systems, DoD

provides a strategic vision for information technology, which emphasizes integration,

interoperability, flexibility, and efficiency through the development of a common,

multi-purpose, standards-based infrastructure. DoD's Technical Architecture Framework

for Information Management (TAFIM) implements CIM initiative concepts by providing

services, standards, design concepts, components, and configurations that can be used to

guide the development of technical architectures that meet mission requirements. The rest

9

of this section focuses on specific issues from the TAFIM that provide background for the

study of this thesis (TAFIM 1993).

a. Technology

Information technology within DoD will eventually extend from the foxhole to

the office, in fixed and mobile locations. Platforms are expected to adhere to a common

set of interface standards that make it possible to configure software across distributed

environments and tailor the software to support specific function processes. Low-cost

platforms, coupled with rapid and responsive software development, will enable effective

implementation of continuous functional process improvements.

h. Product availability

Commercial software products, supplemented (when necessary) by

Government-developed re-usable components, will provide DoD with tools to enhance

productivity and decision making. Users also will be provided with the tools to tailor

screens, menus, and applications so that they can be more productive, innovative and

effective in the performance of assigned duties.

c. Open systems environment

DoD is fully committed to implementing an open systems environment. DoD is

establishing a standards-based framework for defining a technical architecture to provide

interoperability, portability, and scalability. The TAFIM uses Federal and National

standards adopted by industry and international standards accepted worldwide by U.S.

allies. Also, the guidelines will provide transition strategies on how to evolve baselines

and legacy systems to the target open environment.

d Streamlined life cycle

A streamlined life cycle will be used to compress the time needed to deliver the

capabilities to the field and to reduce total life cycle costs. The process will emphasize the

use of integrated computer-assisted methodologies and tools such as shared utility

services, software re-use, and use of commercial products. Ad hoc system development

efforts will not be permitted. System developments will be organized and engineered to be

10

repeatable and reliable to achieve rapid production of quality, efficient, and effective

software.

e. Modeling and Prototyping

Data modeling will be fully integrated with computer-assisted development and

maintenance environments to rapidly capture process models, data models, and other

requirements and transform them into applications and databases that adhere to DoD

standards for data elements and software. Rapid prototyping will be a built-in aspect of

the systems development cycle so that incremental changes that support improved

business processes can be accomplished in days and weeks versus months and years.

/ Streamlined acquisition

A streamlined acquisition process will be functioning in a way to ensure that the

DoD information system infrastructure can be implemented on schedule and within

budget.

g. Education and Training

Education and training of the DoD information management community in new

methods, tools, and practices will be centrally managed. The goal will be to create

technically literate users with a renewed emphasis on enhancing individual skills,

productivity, professional growth, and job satisfaction.

C. SOFTWARE TECHNOLOGY

One key aspect of the software development environment has been the selection of

available software technologies to develop and maintain information systems. With the

many number of development languages and tools available in the market, selection for

application development products can be a difficult task. To understand the goals that the

CM initiative and TAFIM have specified for application development, a discussion

follows on the software technologies that are being used to develop information systems.

11

1. The 3GL Environment

Programming languages of the third generation are often described as procedural

languages because programmers give detailed, step-by-step, instructions on how a task is

to be accomplished. The most widely used third-generation languages (3GLs) include

FORTRAN, primarily for scientific languages, and COBOL, primarily for business

languages; C/C++ and Ada are more recently-developed 3GLs that are considered to be

superior to the older 3GLs in a number of respects. All 3GLs are intended almost

exclusively for use by professional programmers.

Some of the characteristics of a 3GL development process are as follows:

• Formal requirements specifications are needed to define user requirements.

• A development cycle model like the waterfall model is used to define and control

the development process.

• Programs are formally documented.

• Application development time can take months or years to complete because of

inefficient line-by-line coding.

• Maintenance can be slow and very expensive.

McPharland (1993) discusses some of the problems in developing applications using

a purely 3GL approach:

• Developers are encouraged to write every application from scratch, believing

that, because the low-level detail of their applications is unique, no portion of

an applications is reusable.

• Large 3GL applications are difficult to maintain because the maintainers are often

presented with a large body of 3GL code without any design information to help

them identify the small portion of the code that must be changed.

• Development teams are often split into programmers and analysts to encourage

consideration of end-user requirements. Ensuring that the two groups work as a

coherent team is a major source of problems in many projects.

12

• The concentration on low-level programming concerns, the lack of re-use, and

the need for programmers and analysts, leads to long development times.

2. The 4GL Environment

A concern among computer specialists and managers is the amount of time and

development effort devoted to creating computer programs. Fourth-generation languages

(4GLs) were created to speed up the application building process; make applications easy

and quick to change, thus reducing maintenance costs; minimize debugging problems;

generate bug-free code from high-level specification statements; and make languages

user-friendly so that end users could solve their own problems and put computers to work

(Martin 1985).

The distinguishing feature of 4GLs is in their nonprocedural nature that allows a

programmer to specify what is to be done rather than how it is to be done. The processing

task can be specified with significantly fewer lines of code compared to use of a 3GL

(often a tenth of the instructions). (Senn 1990)

Fourth-generation languages help developers achieve this productivity by providing

easy-to-use code generators for developing screens and reports, and by providing a

comprehensive library of verbs, or subroutines, for commonly used program functions.

Developers spend more of their time with the user, ensuring that the screens and reports

match the user's needs. In some cases, the developers spend so little time writing detailed

code that the need for separate analysts and programmers disappears (McPharland 1993).

Some installations have reported bad experiences using 4GLs or few benefits in

productivity were achieved. The reasons include the following: (Martin 1985)

• Much learning is needed to handle some 4GLs with skill. Problems with

development result when the organization has not invested the necessary money

and time in building a team with sufficient skill and practice.

• Some application generators are limited in what they can generate. When applied

to an inappropriate system, they can cause problems or fail to achieve the required

results.

13

• To achieve a major reduction in development time, a major change in the

management techniques and controls is needed.

• A design methodology appropriate for the 4GL was not employed. For nontrivial

systems, computer-aided design is essential to achieve fall productivity and
maintenance benefits.

• The interactive prototyping features of the tool are not used; traditional up-front

specifications (which are usually inadequate) are adhered to, regardless of the

tool's ability to accommodate change.

• Some 4GLs are oversold and do not have the capabilities needed for complex

systems.

3. The CASE Environment

Computer-Aided Software Engineering (CASE) is a tool-based technology that

assists the software developer through all the stages of software development. CASE

tools were developed for organizations to increase the productivity of their development

staffs, improve the cost effectiveness of the development process, and ensure the quality

and reliability of the system produced. CASE environments allow computer specialists to

develop and validate designs and specifications -- in effect, eliminating the manual

methods that were used to perform the same functions.

A CASE environment provides the analyst or systems developer with facilities for

drawing a system's architectural diagrams, describing and defining functional and data

objects, identifying relationships between system components, and providing annotations

to aid project management (Chikofsky, Rubenstein 1988).

CASE technology does not stop at the traditional boundaries of analysis, design, and

construction of software. Integrated CASE (I-CASE) products provided an integrated

package of CASE tools that incorporates such functions as analysis and design, code

generation, and project management tools.

Despite the flexibility and power of I-CASE tools, they still have some shortcomings,

particularly in DoD use: (Emery, Zweig 1993)

14

• They are proprietary, requiring relatively long-term commitment to a single

vendor, and with little likelihood of being adopted as an open industry standard.

• Many of them (particularly the older ones) lack the functionality to define a

complete system within the product's specification language.

• Many are not well integrated with other software products, such as database

management systems and communications monitors.

• The more powerful products are very expensive in terms of hardware

requirements and/or software license fees.

• Some of the products are relatively inefficient in the use of machine resources,

making them inadequate for high-volume production systems.

• In order to get the most effective use of the tools, organizations must undergo a

significant change in the entire software development process. Such change

generally involves a steep learning curve, and encounters a number of serious

organization and behavioral barriers.

4. Additional Software Technologies

Besides 3GLs, 4GLs, and CASE tools, the software development environment can be

enhanced by the use of other software technologies such as software re-use, visual

programming aids, commercial off-the-shelf (COTS) software, micro-based development

tools, debugging tools, utility programs, "middleware" products for interfacing new

applications with existing legacy systems, and various products for managing software

testing, program release, and software distribution. (Emery, Zweig 1993)

15

16

III. THE SOFTWARE DEVELOPMENT ENVIRONMENT

A highly productive development environment goes a long way toward correcting the

deficiencies in many current information systems. The advantage is not simply a matter of

reducing the time and cost of developing and maintaining a system; it can also

significantly enhance the effectiveness of the system. (Emery, McCaffrey 1991)

Success in implementing information technology (IT) in an organization requires a

realistic strategic plan for exploiting the IT support environment for software

development. Developing quality AIS is increasingly important in DoD as continuing

reductions in DoD budgets force re-allocation of resources. DoD's focus on software

development methodologies has been the traditional "waterfall" model. This chapter

discusses that method, plus the prototype methodology and the characteristics of a new

paradigm that is emerging for software development.

Another aspect of the software development environment is the personnel who

develop the information systems. A portion of the chapter discusses the software

organization and the professional skills that private sector organizations look for in

personnel to develop their information systems. Finally, DoD has hundreds of legacy

systems in their inventory. In order to deal with these legacy systems and abide by the

CEVI initiative of eliminating duplication, a discussion is presented on how to deal with

legacy systems.

A. SOFTWARE DEVELOPMENT METHODOLOGIES

Achieving more successful information systems calls for some major improvements in

the software implementation process. This objective can be attacked along two lines:

1) refining the existing process, or 2) making fundamental changes in the process.

(Emery, McCaffrey 1991)

Many IS observers feel that a fundamental change is necessary to keep up with the

growing demands of software development. Despite considerable time and effort to

improve the process of the conventional systems development life cycle (SDLC), it is still

.17

prone to significant failures, schedule delays, and budget overruns. The rest of this section

discusses some of the shortcomings of the SDLC for application development.

Prototyping and an emerging software development paradigm will also be discussed as

alternative approaches to application development.

1. Conventional Systems Development Life Cycle

Accepted methodologies for developing information systems were developed more

than 30 years ago and are still being used today. The most widely used methodology has

been the SDLC. Although there have been some improvements to the process-analysis

and design techniques, CASE tools to automate the different stages of development, and

software products that assist the software programmer in the development process-the

fundamental development process remains the same.

The SDLC development process (also called the "waterfall" model) is divided into

several relatively independent phases: requirement specifications, systems analysis and

design, coding, testing, and implementation. Each phase is completed prior to continuing

to the next stage of development. The rationale for this model is that successful software

development is accomplished by meeting subgoals or stages prior to continuing to the next

phase of development.

The SDLC process introduces problems in the development cycle at the first stage:

requirement specifications. In order to follow the sequential process of the SDLC model

and proceed to systems analysis and design, careful planning of user requirements must be

incorporated in the requirement specifications stage. The later stages of the development

process then implement the "frozen" elements that define the user requirements. User

requirements are difficult to define, and often times the user is not aware of the type of

system that needs to be developed.

This approach to software development is generally characterized by:

• Hand coding in a third-generation language (e.g., COBOL, Ada)

• A structured programming development methodology

• Programming by professional programmers

18

• Modest user participation, mainly in requirements definition phase.

• Low productivity generally using a 3GL, requiring large development teams

• Large development projects have a long delivery cycle

• Maintenance consumes most of the available technical resources

This methodology has worked well for user requirements that are well understood

and where user requirements are not likely to change during the life cycle of the system

being developed. However, the reality is that program sponsors continue to submit

additional requirements throughout the system design process. This results in time

schedule delays and adds costs exponentially.

Adding to the problem of defining user requirements, developers using the SDLC

model began to realize that the longer an error persists throughout the development cycle,

the more costly it is to correct.

Boehm (1983) noted that if correcting an error in the requirements stage costs $1,

the same error will cost $5 to correct in the design phase, $10 to correct in the

programming stage, and $100 in the implementation phase of the development life cycle.

Developers thus need to catch the errors early in the development stage in order to avoid a

drastic rise in costs of developing the system.

Productivity alone would be a powerful reason for moving from conventional

programming to more automated forms of application creation. There is, however,

another reason that is often more powerful: in many situations the conventional

development process does not work. (Martin 1982) The literature is full of examples of

information systems that have been delivered after years of development effort, only to

find that they are not acceptable to the users.

Martin also goes on to say that a common reaction to this unfortunate situation is to

blame the problem on failures to specify requirements thoroughly. As a result, more

elaborate procedures have been devised for requirement specifications, sometimes

resulting in voluminous documentation. But still the systems have been unsatisfactory.

19

The mere act of implementing a user-driven system changes the requirements for that

system. The solution to a problem changes the problem.

2. Prototyping

An alternative to the SDLC is application software prototyping. Prototyping is an

iterative development process that builds quick software models as the means to solicit

and validate user requirements. It reduces cost and adds value to the application

development cycle (Boar 1993).

A software prototype has been described as a live, working system. It can be

evaluated by the developer and the end user as it is being used in an operational

environment. The prototype's purpose is to test out assumptions about users'

requirements, or about the design of the application, or perhaps even about the logic of a

program. (Sprague, McNurlin 1993)

Prototypes are built quickly, tested, and returned for further development in an

iterative process. The initial prototype may be a simple program that performs basic

functions. The system designer and the end user then discover new requirements as they

use the system. As the user operates the prototype version of the system, valuable

feedback can be given to the developer. Each additional version of the prototype then

incorporates the additional functionality that is learned from operating the prototype. An

advantage to using this development process is that user requirements do not have to be

well understood ahead of time.

Unlike the SDLC model for development, the prototype method of development can

be used when the user requirements for a systems are not well understood because

concrete specifications do not have to be identified before building the prototype.

Prototyping eases the communications between the developer and the user by allowing the

user to interact with the prototype, experience its functionality, learn from it, and convey

that information to the developer for further iterations of the prototype. Resistance to

implementation of the system by the user is greatly reduced, significantly reducing

20

implementation and training costs. With user involvement throughout the development

process, there is a greater likelihood that the system will be accepted and used.

DoD has used a special version of the prototype methodology as a means to better

identify requirement specifications in the SDLC. As discussed in the SDLC method,

requirements must be well-planned and understood prior to continuing to the next stage of

development. The prototype has been used as a way to solidify the requirements

specification stage of the waterfall model. This method has been described as

prototyping, but it really is just another adaptation of the traditional conventional model

that incorporates all the limitations of the SDLC.

Important to the prototype methodology is the type of application language used to

develop the prototype. The time and cost of an initial version of a prototype application

can be substantially reduced using higher level-languages like non-procedural 4GLs

(Carey, Mason 1983). In fact, without the use of a high-productive language, prototyping

is not feasible.

There is a difference of opinion by some software developers on which methodology

is better for software development~the SDLC or prototyping. Sprague and McNurlin

write that some (software evolutionists) contended in the early 1980's that 4GLs and

prototyping really only affected a small portion of the development effort, mainly coding,

and thus provided only marginal benefits. The largest productivity problems came from

errors introduced during system analysis and design, and by the paperwork associated with

large projects. Therefore, the evolutionists argued, the new techniques should be merged

into the traditional life cycle methodology and meaningful productivity increases would

come from improving the proven conventional techniques, such as structured

programming. These proponents of the "conventional approach" believe that fine-tuning

the development process through automation and re-use of code and other development

products is the real key to big gains in programmer productivity.

Another point of view says that 4GLs increase programmer productivity but only

when applied to programming in a new way, not just used as another language. These

?1

tools allow people to work differently, not just faster, and that was the key to using them

successfully.

Fourth-generation language proponents argue that programmers who develop

systems in traditional procedural languages have a difficult time adapting to the rapid,

iterative programming allowed by a 4GL. In the 4GL environment, the application

framework is the primary concern in development and details like requirement

specifications are ignored until later in the development process. The argument is that the

conventional programming mind-set that requires fully specifying a system beforehand,

programming the static set of requirements, and concern about code detail and exactness,

is actually a disadvantage, not an advantage, to using 4GLs for application development.

3. Emerging Software Development Paradigm

Emery and Zweig suggest that the difficulties in software development stem from

intrinsic flaws in the conventional implementation process. They suggest a change is

needed in the development process, rather than refining the conventional development

process. They provide common "themes" of a new paradigm that is emerging for software

development:

• The process tends to be relatively continuous throughout the development life cycle

and corrections and modifications are continuously fed back to earlier stages

based on learning.

• Line-by-line coding in a 3GL is avoided as much as possible. Developers use such

products as commercial-off-the-shelf software (COTS) to provide components for

a complete application package, and 4GLs and integrated CASE products that

provide the analyst with high-level specification languages that require many fewer

statements than a 3GL.

• The use of large development teams is avoided as much as possible. Small

development teams are possible because of the use of higher-level languages and

the avoidance of 3GL programming.

22

• A small team working on a project over a relatively short development cycle

permits greater team continuity.

• Rather than discouraging changes in the requirements like the SDLC, this

paradigm depends on continual interaction with the users to solicit their

knowledge into an evolving application.

• End-user tools, such as report generators and query languages, permit the user

organization to make simple, quick changes to information outputs.

4. Object-Oriented Technology

Object-oriented technology is increasingly credited with huge development

productivity gains, development-cost savings, on-time or early completion of projects,

increasing quality of initial products, and easier maintenance of the finished systems

(Amaru 1993).

Object-oriented programming appears to be one of the emerging methodologies of

the 1990s for faster application development time, re-usability of code, and increased

programmer productivity. However, Amaru warns that improved productivity comes at a

price. Object-oriented programming requires a radically different way of thinking.

Programmers and analysts who are accustomed to doing their jobs in the traditional

procedural way-using structured 3GLs or 4GLs and traditional system analysis

techniques-will need substantive retraining in object-oriented programming and analysis

techniques.

In conjunction with object-oriented technology, several methodologies have been

developed to assist developers in system analysis and design: (Amaru 1993)

• Shlaer-Mellor method allows software engineers to examine abstract data types

to find objects. The objects are then used to create models representing process,

state, and information.

• Yourdan system analysis methodology developed by Edward Yourdan

concentrates on object-oriented systems analysis.

23

• Booch method attempts to create a logical and a physical model of the system

being developed.

Object-oriented development is most important in three type of applications:

(Sprague, McNurlin 1993)

• Graphical applications. The inheritance of the objects provides consistent

behavior among the objects allowing easy-to-remember user interfaces.

• Multimedia applications. "No other database management technique can handle

a variety of data, such as voice, data, images, text." (Sprague, McNurlin 1993)

• Complex systems. Objects manage complexity better by reducing the

dependencies among functions.

Fichman and Kemerer (1993) note that object-orientation is a new development

model and requires new skills in analysis, design, and programming that replace, rather

than build on, those associated with conventional development. It has also been observed

that to maximize re-use, developers must learn to assemble applications using objects

developed by others.

A software development organization must select among an almost limitless number

of possibilities and combinations of management practices, development techniques, and

automated support in order to create and evolve whatever software methodology it uses.

The choice of methodology is influenced by a wide variety of such considerations as the

size and skills of the software development organization, applications being developed, the

number of places in which applications will be used, the criticality to the applications, and

the projected needs for maintenance and modification. (Wasserman, 1981)

B. DEALING WITH LEGACY SYSTEMS

The costs of operating and maintaining DoD's application software for Automated

Information Systems (AIS) has been estimated to be $10 billion annually. Despite this

level of spending, DoD has been unable to obtain correct information from the data stored

in various databases due to the lack of standardized data and data structures across

systems. Many of these systems use proprietary software and hardware making it difficult

24

or impossible to interoperate with other DoD information systems. The DoD legacy

systems inventory includes obsolete electronics, technology, and systems designs up to 30

years old and they have been poorly documented. (Aiken, Muntz, Richards 1994)

For many years, DoD has developed, operated, and maintained unique AIS that often

accomplish the same task. Valuable resources are often wasted maintaining these obsolete

or outdated systems. As described in Chapter I, the redundancy of these systems has

forced DoD to attempt to consolidate systems with similar functional capability. DoD's

approach to eliminating the redundant information systems is to select the "best of breed"

AIS systems and use them as "migration" systems, with the goal to integrate them into

target systems by selective reengineering.

Most information systems executives feel trapped by the past. They have hundreds

or even thousands of old legacy programs and data files that they would love to replace.

But with a backlog of perhaps two or more year's worth of new work already in the

queue, they see no way or replacing these legacy systems (Sprague, McNurlin 1993).

Today, there are choices available for dealing creatively with legacy systems. Instead

of replacing a legacy system with an application package or totally re-writing it with a

procedural language such as COBOL, there are several alternatives, made possible by

tools, new development techniques, and new programming languages.

Sprague and McNurlin (1993) present several tactics for dealing with legacy systems:

♦ Re-write legacy systems. In some cases, a legacy system may be too far gone to

rescue. If the code is convoluted and patched, if the technology is antiquated,

and if the design is poor, it may be necessary to start from scratch An option

many companies are choosing is to "downsize" legacy system applications by

re-writing them for a smaller platform, such as a midrange machine or network

server.

♦ Replace legacy systems with purchased packages. Many commercial packages

today have the functionality and versatility to replace older legacy systems that

perform the same functions. Another reason for purchasing a commercial package

25

is to provide connectivity between different operating systems or distribute an

application's workload among heterogeneous systems. Some application packages,

often called "middleware," support an open-system strategy in that the database

networking infrastructure is independent of front-end and back-end vendors.

• Refurbish legacy systems. If the legacy system is operating well and is still

maintainable, some extensions can be added. These extensions can support new

inputs, outputs, and make new uses of the data.

• Restructure legacy systems. If a legacy system is running efficiently, the system

can be restructured using automated tools to turn "spaghetti code" into more

structured code.

• Re-engineer legacy systems A step beyond restructuring is re-engineering, which

is extracting the data elements from an existing file and the business logic from

an existing program, and moving them to new platforms. (Sprague, McNurlin

1993)

C. THE SOFTWARE ORGANIZATION

Companies that are attempting to manage the full range of system development are

creating a spectrum of systems groups. PRISM, which stands for Partnership for

Research in Information Systems, is a joint research service that investigates subjects

suggested by its corporate sponsors. In its study of information systems human resources,

PRISM identifies three types of information system professionals needed for the 1990s

(Sprague, McNurlin 1993).

1. The High-level Business Analysts

The high-level business analyst is the professional in an organization who identifies

ways that the organization can benefit from using information technology. This analyst is

someone who has both company and general business knowledge and generally is a

functional specialist skilled in a specific business area such as inventory control.

26

2. The Multidisciplinary Team Leaders

Multidisciplinary team leaders lead small, highly-skilled teams of system developers

with diverse backgrounds. The work of these teams differ from that of the current

practice in systems development where the work is done in relatively independent stages

or pieces. Multidisciplinary teams perform the entire application development and are

involved throughout a project's life cycle.

3. The Super Technical People

Super technical people know one technology very well and have some knowledge of

several contemporary technologies.

4. Information Technology Specialists

Martin (1982), defines various specializations for today's information technology

environment:

• Information center representatives work with end-users to assist them in

obtaining the information they require and in generating user-driven applications

or prototypes.

• Data-base administrators collect the logical view of the data that different

applications need and synthesize them to create logical database structures and

maintain a data dictionary and logical model of the data.

• The Data-base designer is the technical expert of the database systems that are

being used by the organization and is concerned with database hardware, software,

performance, and how the data is distributed.

• A Software specialist is a specialist in one software package for application

generation.

• Network specialists ensure that network services provide the services required

by the organization.

The Bureau of Labor Statistics (BLS) predicted that employment in the computer

industry will grow at an average annual rate of 3.7% through 1995 (BLS 1986). The need

for computer industry personnel, along with the rapid rate of change in computer

27

technology, will add pressures on today's organizations to find the quality personnel with

the critical skills necessary to develop information system applications.

Cheny, Hale, Kasper (1989) surveyed senior IS professionals to identify the

importance of various skills for programmers, systems analysts/designers, and project

managers for the 1990s. The predictions are based on expert opinion of 79 information

systems managers and 58 organizations of various sizes. Results of the survey for the

1995 workforce, compared to a prior survey conducted in 1987, are as follows:

1987* 1995 **

COBOL Programmers 11,151 6,480
FORTRAN or Basic 300 300
PASCAL and C 2,050 4,180
Database Management 1,480 2,180
4th Generation Languages 1,150 7,401
Systems Programmers 401 600
Data Communications 401 1,400
Systems Analysts 2,840 4,150
Operators 850 400
Data Entry 330 0
Information Center Personnel 2,400 4,100

* actual employment figures
** projected employment figures

Reproduced from (Cheny, Hale, Kasper, 1989)

The data shows that respondents expect net increases in personnel requirements for

all categories except COBOL programmers, FORTRAN or Basic programmers, data entry

personnel, and computer operators. The data also indicates that the number of personnel

limited to some traditional third-generation languages such as COBOL or FORTRAN

skills will decrease and the demand for workers with knowledge of non-procedural

languages (4GLs) is expected to increase dramatically.

28

The need for 4GL specialists appears to be tied to the movement toward using

microcomputers for an increasing number of small applications. Some 4GLs, such as

PowerBuilder and Visual Basic, are used as development tools and are replacing

procedural languages such as COBOL.

The data also indicates there will continue to be a substantial demand for database

and system programmers. The cost of converting existing applications has prevented

many companies from fully utilizing this technology.

Many of the firms surveyed are using a phase in/phase out approach-that is, when

new systems are designed to replace existing ones, database management system (DBMS)

technology is utilized, but modification of existing applications to employ DBMS

technology is not actively pursued. As more software applications utilize DBMS

technology, the demand for database specialist will increase. (Cheny, Hale, Kasper 1989)

The IS professionals also report a continued demand for data communication

specialists, probably a result of continued integration of systems and a tendency of moving

their technology toward distributed systems.

Collectively, the results of this survey show a shift from a centralized, mainframe

environment to a distributed, micro-based systems and from procedural to non-procedural

languages.

D. DATABASE INTEROPERABILITY
In order to allow different computers, using different operating systems, to work

together on cooperative tasks, interoperability will have to be achieved. Interoperability

will allow the exchanging of information in standard ways without any changes in the

command language or in functionality of the information system.

Open systems and standards refer to using products based on standards that promote

interoperability and portability between heterogeneous vendor environments.

Interoperability and transportability can be achieved by using various strategies: using a

single vendor, standards, 4GLs, middleware, and CASE tools.

29

30

IV. PRESENTATION OF DATA

Contemporary technology presents policy makers with a bewildering array of

alternatives, what policies and strategies for software development should be employed,

given the huge variety of available alternatives? A review of best industry practice can

provide valuable insights for dealing with this problem. This was the purpose of a

questionnaire used to assess current industry practices.

A survey questionnaire was faxed to senior executives who play a vital role in

strategic planning for their organizations in information systems. Each organization was

telephoned to establish contact with the Chief Information Officer or equivalent executive

officer to solicit his or her input to the survey. Respondents received a packet of the

survey, along with a cover letter explaining the purpose and confidentiality of the survey.

Of the 31 respondents selected for the survey, 23 responded-a gratifying high response

rate.

The survey was designed so that the majority of the questions provided a list of

responses to select. The survey participants were then asked to select the response that fit

their views most closely. In compiling the results of the survey, it is recognized that the

sample size is too small to perform traditional statistical analysis. However, the results do

add valuable insight into emerging trends in software development. A copy of the

questionnaire is in the Appendix.

A. THE ROLE OF LEGACY SYSTEMS

The respondents were asked three questions about the role of legacy systems in their

organizations:

1. What role do you envision for legacy systems in your information strategy over

the next 5 years? (Total number of responses are in parenthesis.)

(2) A continued central role

(10) An important but declining role

(11) A sharply declining role as we aggressively replace legacy systems.

31

The response to this question depended largely on the function the legacy systems

perform for the organization, and the investment the organization has made in its legacy

systems. As an example, one respondent that selected a continued central role for legacy

systems in his organization stated that his organization invested more than $250 million

in legacy systems over the last eight years. With such a large investment, it will be

difficult for his company to scrap the legacy systems. Besides, the legacy systems still play

a vital role in the organization.

2. Rate the importance of continuing to invest in enhancement of their legacy

systems. (Total number of responses are in parenthesis.)

(11) Not important to enhance legacy systems

(11) Somewhat important to enhance legacy systems

(1) Very important to enhance legacy systems

The responses to this question follow the first question closely. The respondents that

viewed legacy systems as playing an important but declining role rated their systems as

somewhat important to enhance; those that see a sharply declining role for their legacy

systems, do not want to invest in enhancements.

3. The respondents were asked to select the relative importance of a list of options

to enhance their organization's legacy systems. The data depicted in Table 1,

shows that re-writing a legacy system in a procedural language and restructuring

a legacy system, is not an important option.

32

Not

Important

Somewhat

Important

Very

Important

Re-write in a procedural language 18 5 0

Re-write for client/server 6 7 10

Replace with application packages 2 4 17

Refurbish by adding extensions 10 8 5

Restructure 16 5 2

Integrate using "middleware" 5 12 6

Table 1. Legacy System Options

B. DEVELOPING AND MAINTAINING INFORMATION
SYSTEMS

Respondents were asked to indicate the relative importance of software languages

and tools in developing and maintaining applications over the next five years. The results

appear in Table 2 through Table 10.

Table 2 shows the results for using a 3GL such as COBOL for developing and

maintaining applications. It is interesting to note that a majority of the respondents

viewed 3GLs as relatively important in developing and maintaining applications. Later

tables will indicate their strong support for higher-level languages and tools. When asked

about their responses, the respondents felt that the question really addressed two separate

issues: software development and maintenance. Because the question was stated as, "In

developing and maintaining information systems....," the respondents argued that a 3GL

such as COBOL may not be important for developing applications, but still is very

important for the maintenance of systems that have been written in 3GLs.

33

Not

Important

Somewhat

Important

Very

Important Essential

Don't

Know

3GL 10 8 3 3

Table 2. Importance of 3GLs

Table 3 displays the respondents' views of programming in 3 GLs with a heavy use of

re-usable components for application development. The results of the data correspond

fairly closely with the results in Table 2.

Not

Important

Somewhat

Important

Very

Important Essential

Don't

Know

Program 3GL

with re-use

8 11 3 1

Table 3. Program in a 3GL with heavy use of re-usable components

The data in Table 4 supports the conclusion that 4GLs are expected by the

respondents to be important in application development in the near future. A strong

majority of the respondents feel that 4GLs are very important or essential for application

development.

Not

Important

Somewhat

Important

Very

Important Essential

Don't

Know

4GL 1 4 14 4

Table 4. Importance of 4GL

34

Table 5 lists the results of the respondents view on I-CASE tools in developing

applications. Conclusions can be drawn from the data that the majority of the respondents

do not strongly support I-CASE as important to application development.

Not

Important

Somewhat

Important

Very

Important Essential

Don't

Know

I-CASE 3 10 7 2 1

Table 5. Importance of I-CASE products

Table 6 lists the respondents' views on the relative importance of using application

packages in developing information systems. The data supports the conclusion that the

respondents feel application packages will be used in the future to develop and maintain

information systems. When interviewed, some of the respondents indicated that the

commercial application packages that are available today are sufficient to take care of

some of their business needs. Again, a strong majority of the respondents selected very

important and essential as responses.

Not

Important

Somewhat

Important

Very

Important Essential

Don't

Know

Application

packages

2 1 11 9

Table 6. Importance of Application packages

The respondents view micro-based development tools as playing an important role in

the development of applications. In Table 7, a strong majority of the respondents expect

35

these tools to be very important or essential over the next five years for development of

applications.

Not

Micro-based

development

tools

Important Important

Very

Important

12

Essential

Don't

Know

Table 7. Importance of Micro-based development tools

Table 8 shows that a majority of the respondents view "middleware" as very

important or essential in the development of software applications. It is interesting to note

that four of the respondents did not understand the role of middleware or did not know if

middleware will play a role in application development.

Not

Important

Somewhat

Important

Very

Important Essential

Don't

Know

Middleware 1 3 12 3 4

Table 8. Importance of Middleware

The responses in Table 9 are more dispersed than the responses for some of the prior

software tools. The respondents were asked to select the relative importance of

object-oriented technology in the development of applications. Conclusions can be drawn

from the data that many of the respondents do not feel strongly about object-oriented

technology for application development, although many view it as very important or

essential.

36

Not

Important

Somewhat

Important

Very

Important Essential

Don't

Know

Object -

oriented

technology

1 7 8 6 1

Table 9. Importance of Object-oriented technology

The respondents were asked to select the relative importance of prototyping in

application development. Table 10 indicates that all the respondents feel prototyping is

important in developing and maintaining system applications over the next 5 years.

Not

Important

Somewhat

Important

Very

Important Essential

Don't .

Know

Prototyping 0 3 8 12
 1

Table 10. Importance of prototyping

C. PROFESSIONAL SKILLS
Table 11 displays the respondents' views of the professional skills they will be looking

for to train or hire in their software development personnel over the next five years. The

respondents were given a list of professional skills and asked to rate their organization's

relative need for those types of personnel. The table lists the skills and the responses to

their organization's relative need.

37

Little or no need A significant need A critical need

3GL specialists 18 4 1

4GL or I-CASE specialists 6 14 4

Database specialists 1 13 9

Data communications specialists 1 7 15

Systems analysts/designers 2 14 7

Specialists in PC-based products 6 12 4

Functional specialists 4 10 8

Table 11. Professional skills to train or hire

A majority of the respondents feel their organizations have enough 3GL specialists to

fulfill requirements for software development. A strong majority of respondents view data

communications specialists as a critical need for their organization. The results also

correlate well with Table 4, where a strong majority viewed 4GLs as very important or

essential in application development.

D. SOFTWARE DEVELOPMENT METHODOLOGY

The respondents were asked to select their relative agreement with four statements

about revising the software development process. The available response for each

statement was: strongly agree, somewhat agree, somewhat disagree, strongly disagree,

and no view. (Total number of responses are in parenthesis.)

1. The conventional approach is basically the right one; any flaws can best be

remedied by imposing greater software engineering maturity over the process.

(Total number of responses are in parenthesis.)

(3) Somewhat agree

(8) Somewhat disagree

(12) Strongly disagree

38

2. An adaptive approach may be useful for less critical applications but is too risky

for "mission-critical" applications. (Total number of responses are in parenthesis.)

(5) Somewhat agree

(5) Somewhat disagree

(13) Strongly disagree

When asked about the response to question 2, the respondents agree that an adaptive

approach is useful for less critical applications but disagree that an adaptive approach is

too risky for "mission critical" applications.

3. An adaptive approach appears to offer a good long-term approach to software

development, but the development tools and human skills do not yet exist to make

this a practical approach over the next 5 years. (Total number of responses are in

parenthesis.)

(4) Strongly agree

(5) Somewhat agree

(6) Somewhat disagree

(8) Strongly disagree

The responses are more dispersed than the prior responses. Several of the

respondents when asked about their response, agree that an adaptive approach is a good

approach to software development, but disagree that the development tools and human

skills will not exist to make it a practical approach in the next five years.

39

4. An adaptive approach provides the most practical way of responding to the

rapidly changing business environment that we face; therefore, we are trying to

move to such a methodology as rapidly as practicable. (Total number of responses

are in parenthesis.)

(13) Strongly agree

(9) Somewhat agree

(1) Strongly disagree

E. STRATEGIC PLANNING

A series of three questions was asked of the respondents to determine their views on

strategic planning. The questions centered on goals for improving the software

development process and the relative importance for accomplishing long-term

organizational goals.

1. When asked what their strategy is for "open architecture" over the next five years,

96% responded that it will be given considerable weight in their information strategy.

They view open architecture and standards as vital to competing in the business

environment.

2. When asked how important it is for their organization to make a substantial

improvement in the software development process, 17 responded that it is one of their

high priority goals and 6 responded that it is important, but not at the top of their list in

priorities.

40

3. The respondents were given a list of organizational goals and asked to rank them

from 1 to 5, with 1 being most important and 5 being least important. The responses are

listed in order by weighted average:

• Developing a more effective infrastructure 2.2

• Identifying and developing new applications of strategic importance to the

organization 2.3

• Rapid response to user requests 2.4

• Lower cost of application development 4.1

• Managing the maintenance of legacy systems and migrating them to new

systems 4.2

41

.42

V. CONCLUSIONS AND RECOMMENDATIONS

It is hoped that the survey data and conclusions of this thesis will provide DoD with

additional knowledge of private sector practices for developing application software, the

use of software languages, and the type of skills that the private sector is looking for in

their software development personnel. Even though the data is not statistically significant,

it is felt that the views of the executives surveyed, are relevant in determining the future

direction of application development.

A. RESPONDENT PROFILE
The data from each questionnaire was analyzed individually and also in aggregate

form to develop a profile of the IS executives that responded to the survey. Hopefully,

this will give the reader an overall view of the information technology tactics used by the

majority of the respondents.

The survey data was too limited in scope to separate the executives into specific

categories, but an attempt was made to "label" the executives as IS managers of the

"status quo" or managers on the "leading edge" of information technology innovation. In

order to accomplish that, three categories in the survey were looked at closely: view of

legacy systems, software languages and tools used for application development, and view

of the conventional approach versus an adaptive approach to software development

methodologies.

Even though the views of the author are open to debate, they do provide a starting

point for identifying a profile of the survey respondents. The categories were chosen for

the following reasons:

1. Organizations that have operated their legacy systems feel comfortable with the

services they provide. Abandoning these systems for new technology can be a major task

in change management skills, even though abandoning the systems for better technology

may mean better productivity for the organization. Also, management may not be willing

to take the risk to move to another information system or direct the necessary funds

43

toward their development. CIOs of these organizations feel comfortable with the "status

quo" and generally feel comfortable with the way things are.

2. CIOs that are forward-looking will seek software languages and tools that

incorporate the latest technological advances. These CIOs will view 4GLs, I-CASE

products, and object-oriented technologies as very important for development of

applications in their organizations.

3. In today's era of budget constraints, application development backlogs, and user

demands for new software applications, some CIOs will view the conventional approach

to software development as not important and will demand a more adaptive approach as

vital to reliable and effective application development.

Twenty of the executives surveyed are viewed as being on the leading edge of

information technology innovation. They view legacy systems as not important in their

organizations and do not see the need to enhance them. At the same time, they view

4GLs, I-CASE products, and object-oriented technology to be very important in

application development. They also feel an adaptive form of software development is key

to the successful implementation of information systems.

Interestingly, one respondent's view of the three categories selected to profile the IS

executives was quite different from the majority of survey views. His view is that it is very

important to enhance legacy systems and integrate them with middleware products, or

restructure the code by reducing the code into subcomponents and modules. His view on

languages and tools is that 4GLs, I-CASE products, and object-oriented technology are

not important. A telephone interview with the respondent revealed that he is very

skeptical of the newer products on the market and feels that vendors over-sell their

products. In his view these products have not proved to be effective for application

development and are too immature. His philosophy is that the "old" ways of developing

and maintaining information systems still work better. This IS executive appears to be

happy with the status quo.

44

It has not been the intent here to determine which approach to managing information

technology resources is the correct one. Organizations manage technology in different

ways depending on their business functions and their established goals.

B. LEGACY SYSTEMS
DoD, as well as the private sector, have many legacy systems that continue to be

maintained. Some experts in the IS field have estimated that maintaining an information

system can absorb more than 60% of the system's life cycle costs. Clearly, if a legacy

system does not provide the necessary functionality for an organization to accomplish its

business goals, then questions can be raised as to why organizational IS budgets continue

to pour valuable resources into maintaining these systems.

Because of the CIM initiative, DoD has taken steps to reduce the inventory of its

legacy systems and consolidate them by taking the "best of breed" systems and migrating

them toward more centrally operated systems. Their short-term goal is to re-engineer the

systems by identifying common processes and restructuring them into common systems

operated by the individual services.

In the private sector, legacy systems are being aggressively replaced rather than

rebuilding them or restructuring them. Viable options cited for replacing legacy systems

are replace with application packages, integrate with middleware, and re-write for

client/server platforms. The majority of respondents view legacy systems as too costly to

maintain and are looking for new and innovate ways to replace them.

C. INFORMATION SYSTEM LANGUAGES

In developing applications for the next five years, some of the languages and tools

the private sector is expecting to use are fourth-generation languages, application

packages, micro-based development tools, and middleware. Some of the CIOs

interviewed for the survey feel that application packages are now being developed that

can easily replace older systems in the organization, especially in the business applications.

45

They see no need in developing new applications, when proven and tested products are

available from vendors that contain the functionality they desire for their business.

DoD encourages the use of commercial off-the-shelf (COTS) software for

developing information systems. When necessary, the COTS must be supplemented by

government-developed re-usable components.

DoD also mandates the use of Ada for the development of all applications unless it

can be shown that it is cost effective to use some other software language. It is interesting

to note that none of the executives responding to the survey has software development

personnel trained in the use of Ada. The majority of the organizations almost exclusively

use COBOL as the 3GL of choice, with FORTRAN and BASIC as secondary choices.

Moreover, the private sector does not view developing information systems with a

procedural language or a procedural language with re-usable components as feasible

options.

D. SOFTWARE DEVELOPMENT PERSONNEL

The private sector is looking for a diverse group of specialized software development

personnel to support their organizations. For 3GL programmers, these organizations use

personnel that have been trained mainly with COBOL, but feel that 3GLs are not

important in applications development. Most will be employing personnel with skills in

4GL programming, CASE tool development experience, and specialties in object-oriented

technologies. It appears that many of the organizations will be employing fewer personnel

with procedural language background.

An interesting question arises as how these organizations are going to pay the cost

for training and developing the skills of these personnel. Also, some organizations will

have less development personnel because they intend to purchase more application

software rather than develop applications themselves.

46

E. RECOMMENDATIONS FOR FURTHER RESEARCH

As the research for this thesis continued to develop and the survey was administered

to the IS executives, it was realized that the scope of the thesis could be expanded.

However, time constraints did not allow for further research and modification of the

questionnaire. Therefore, this paper is viewed as a general starting point for follow-on

research. Areas of additional research are:

1. Determine how private sector organizations plan to transition to new development

environments and high-level languages and tools. It would be interesting to find

out the plan for training personnel in these new skills and to determine what the

costs will be.

2. Assemble several focus groups of IS management personnel to determine their

strategies for application development. The survey is a valuable tool for

obtaining some information but it is limited in the information it provides. A

better understanding can be obtained through interviews and focus groups.

3. Observe several IS departments in organizations to determine how they deal

with information technology issues. Develop a case study where

recommendations can be made for the best high-level languages and tools to be

used in application development.

4. Expand the research of this paper by developing a more comprehensive survey

and correlating the data to provide more specific information on why CIOs select

specific responses.

47

48

APPENDIX. SURVEY QUESTIONS

Survey Questionnaire

1 Some information systems that were developed 10 or 20 years ago are still being used
by organizations. The term often used to describe these systems is legacy systems. What
role do you envision for legacy systems in your information strategy over the next 5 years?

 A continued central role
 An important but declining role
 A sharply declining role as we aggressively replace legacy systems.

2 Over the next 5 years, how would you rate the importance of continuing to invest in
the enhancement of your organization's legacy systems (versus the development of new
systems and applications)?

 Not important to enhance legacy systems
 Somewhat important to enhance legacy systems
 Very important to enhance legacy systems

3 In your opinion, what do you see as viable options for dealing with legacy systems?
For each option listed below, please rate its importance using the following scale:

1 = not important 2 = somewhat important 3 = very important

 Re-write in a traditional procedural language (e.g., COBOL)
3HZ Re-write for a client/server architecture
~ZZ Replace them with off-the-shelf application packages
 Refurbish by adding extensions (e.g., add a new graphical user interface)

Restructure (e.g., use tools to turn "spaghetti code" into more structured code)
 Integrate them using "middleware" products
 Other approaches (please describe briefly) ___

49

4. In developing and maintaining information system applications over the next 5 years,
please indicate the importance of the following software languages, tools, and
programming techniques. (Please check one for each category.)

(a) 3GL (e.g., COBOL)

Somewhat Very Don't

Important Important Important Essential Know

(b) Program in a 3GL with heavy

use of re-usable components

(c) 4GL (e.g., FOCUS, PowerBuilder)

(d) I-CASE products (e.g.. TI's IEF)

(e) Application packages (e.g.. payroll)

(f) Micro-based development tools

(e.g., Visual Basic)

(g) Middleware (e.g.. IBI's EDA/Link)

(h) Object-oriented technologies

(e.g., C++, Ada 9X)

(i) Prototyping

5. Approximately how many information system software development personnel
(full-time professional programmers, analysts, etc.) are employed by your organization
(i.e., the part you manage and on which your answers are based)?

50

6. What percentage of your software development personnel have skills in the use of the
following procedural programming languages? (Note: The percentages need not add up to
100%; the sum can be less than or greater than 100%.)

COBOL %

C/C++ %
PASCAL %

Ada %

BASIC %
FORTRAN %

Other % (please list)

7. In developing software applications for information systems over the next 5 years, how
many software development personnel will your organization have compared to software
development personnel you have today?

 Significantly fewer than today
 About the same
 Significantly more than today

8. Over the next 5 years, which types of professional skills will you be looking for to train
or hire in significant numbers? Please rate your need on the following scale:

1 = little or no need 2 = a significant need 3 = a critical need

 3GL specialist
 4GL or I-CASE specialist
 Database specialist
 Data communications specialist
 Systems analysts/designers
 Specialists in PC-based products (e.g., word processing, spreadsheets)
 Functional specialists (i.e., skilled in a specific business area such as inventory

control)
 Other (please specify)

51

9. There has been considerable attention given to revising the way we develop software
applications. One possible direction would be to move from the "conventional" approach
to a more adaptive one. The following (admittedly somewhat simplistic) descriptions are

provided for the purpose of explaining the questions given below.

Characteristics of the conventional methodology:
- The process is divided into relatively independent stages (e.g., requirement

analysis, design, coding, testing, and conversion).
- Careful attention is given to the up-front requirement specifications, with a heavy

effort made to minimize the number of subsequent revisions in the specifications.
- The primary emphasis in improving the development process is focused on

achieving greater control in order to improve the predictability and reduce the
variation of the process.

Characteristics of an adaptive methodology:
- Initial requirement specifications are viewed as a first approximation rather than an

attempt to determine the "final" specifications.
- Prototyping is used to demonstrate to "customers" working examples of screens,

reports, and application logic.
- Feedback is obtained from users during the entire development process, with

suggested changes incorporated into a working prototype.

Please indicate the strength of your agreement with the following statements about such a
shift in the development methodology.

a. The conventional approach is basically the right one; any flaws can best be remedied
by imposing greater software engineering maturity over the process.

Strongly Somewhat Somewhat Strongly No
Agree Agree Disagree Disagree View

b. An adaptive approach may be useful for less critical applications (e.g., "end-users"
programs), but is too risky for "mission-critical" applications.

Strongly Somewhat Somewhat Strongly No
Agree Agree Disagree Disagree View

52

c. An adaptive approach appears to offer a good long-term approach to software
development, but the development tools and human skills do not yet exist to make this a
practical approach over the next 5 years.

Strongly Somewhat Somewhat Strongly No
Agree Agree Disagree Disagree View

d. An adaptive approach provides the most practical way of responding to the rapidly
changing business environment that we face; therefore, we are trying to move to such a
methodology as rapidly as practicable.

Strongly Somewhat Somewhat Strongly No
Agree Agree Disagree Disagree View

10. Over the next 5 years, what is your strategy with respect to the use of an "open"
architecture (i.e., one based on widely used standards)?

 The use of an open architecture will be given considerable weight
 "Openness" is not likely to be given much weight in making development

decisions
 We have no strategy
 No opinion

11. In looking at your overall management goals, how important do you consider it for
your organization to make a substantial improvement in the software development
process?

 One of my high priority goals
 Important, but not near the top of my priority list
 Not very important

53

12. In looking at strategic planning for information systems development over the next 5
years, please rank the following choices in terms of importance to you:

(1 most important, 5 least important)

 Rapid response to user requests
 Lower cost of application development
 Developing a more effective infrastructure (i.e., network, shared databases)
 Managing the maintenance of legacy systems and migrating them to new

systems
 Identifying and developing new applications of strategic importance to my

organization
 Other (please specify)

13. Would you like to receive a summary of the research findings from this project?

 yes no Name

54

LIST OF REFERENCES

Aiken, P., Muntz, A., Richards, R., DoD Legacy Systems Reverse Engineering
Requirements, ACM, 1994.

Amaru, Christopher, Where Object Technology Fits In, Digital News & Review, v. 10,
no. 9, October 1993.

Boar, Bernard H., The Art of Strategic Planning for Information Technology, John Wiley
& Sons, Inc., 1993.

Boehm, Barry W., Software Engineering Economics, IEEE Transactions on Software
Engineering, pp. 4-21, January 1984.

Bureau of Labor Statistics, Occupational Projections and Training Data, Bulletin 2251,
Washington, D.C., U.S. Government Printing Office, 1986.

Burke, John P., Nip & Tuck for Legacy Systems: Give your HP 3000 System a Face Lift,
But Use the Right Instruments, HP Professional, v. 7, no. 12, December 1993.

Carey, T.T., and Mason, RE. A., Information System Prototyping: Techniques, Tools,
and Methodologies, The Canadian Journal of Research and Information Processing, v. 21,
no. 3, pp. 177-191, 1983.

Cheny, Paul H., Hale, David P., Kasper, George M., Information Systems Professionals:
Skills for the 1990's, Proceedings 22nd Annual Hawaii Int'l Conf. on System Sciences, pp.
331-336, 1989.

Defense Information Systems Agency Center for Architecture, Department of Defense
Technical Architecture Framework for Information Management, Ver. 2.0, November
1993.

Emery, James C, and Zweig, Dani, The Use of Ada for the Implementation of Automated
Information Systems Within the Department of Defense, Naval Postgraduate School,
December 1993.

Emery, James C, McCaffrey, Martin J., Ada and Management Information Systems:
Policy Issues Concerning Programming Language Options for the Department of
Defense, Naval Postgraduate School, Monterey, Ca., June 1991.

55

Endoso, Joyce, DoD Releases Long-awaited Vision Plan for CIM Initiative, Government
Computer, June 1994.

Fichman, Robert G, and Kemerer, Chris F., Adoption of Software Engineering Process
Innovations: The Case of Object Orientation, Sloan management Review, Winter 1993.

GAO, House Report 101-382, DoD Automated Information Systems Experience
Runaway Costs and Years of Schedule Delays while Providing Little Capability, 1992.

Jones, Capers, Applied Software Measurement, McGraw-Hill, 1991.

Martin, James, Application Development Without Programmers, Prentice-Hall Inc., 1982.

Martin, James, Fourth-Generation Languages, Volume I, Principles, Prentice-Hall, Inc.,
1985.

McParland, Patrick, From GLs to GTls, EXE, v. 8, no. 5, October 1993.
Senn, James A., Information Systems in Management, 4th Ed., Wadsworth Publishing
Co., 1990.

Shikofsky, Elliot J., and Rubenstein, Burt L , CASE: Reliability Engineering for
Information Systems, IEEE Software, pp. 11-16, March 1988.

Sprague, Jr., Ralph H, and McNurlin, Barbara C, Information Systems Management in
Practice, 3rd Ed., Prentice-Hall, Inc., 1993.

Wasserman, Anthony I., The Ecology of Software Development Environments, IEEE
Computer Society Press Technology Series, pp. 28-33, IEEE Computer Society Press,
1989.

56

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Professor James C. Emery 1
Systems Management (SM/EY)
Naval Postgraduate School
Monterey, California 93943-5002

4. Commander William B. Short 1
Systems Management (SM/SH)
Naval Postgraduate School
Monterey, California 93943-5002

5. Lieutenant Commander Gregory A. Clancy
VQ-4
7791 Mercury Road
Tinker AFB, OK 73145-8704

1

57

